New insight into pesticide partition coefficient Kd for modelling pesticide fluvial transport: application to an agricultural catchment in south-western France.

نویسندگان

  • Laurie Boithias
  • Sabine Sauvage
  • Georges Merlina
  • Séverine Jean
  • Jean-Luc Probst
  • José Miguel Sánchez Pérez
چکیده

Pesticides applied on crops are leached with rainfall to groundwater and surface water. They threat the aquatic environment and may render water unfit for human consumption. Pesticide partitioning is one of the pesticide fate processes in the environment that should be properly formalised in pesticide fate models. Based on the analysis of 7 pesticide molecules (alachlor, atrazine, atrazine's transformation product deethylatrazine or DEA, isoproturon, tebuconazole and trifluralin) sampled from July 2009 to October 2010 at the outlet of the river Save (south-western France), the objectives of this study were (1) to check which of the environmental factors (discharge, pH, concentrations of total suspended matter (TSM), dissolved organic carbon (DOC) and particulate organic carbon (POC) could control the pesticide sorption dynamic, and (2) to establish a relationship between environmental factors, the partition coefficient Kd and the octanol/water distribution coefficient Kow. The comparison of physico-chemical parameters values during low flow and high flow shows that discharge, TSM and POC are the factors most likely controlling the pesticide sorption processes in the Save river network, especially for lower values of TSM (below 13mgL(-1)). We therefore express Kd depending on the widely literature-related variable Kow and on the commonly simulated variable TSM concentration. The equation can be implemented in any model describing the fluvial transport and fate of pesticides in both dissolved and sorbed phases, thus, Kd becomes a variable in time and space. The Kd calculation method can be applied to a wide range of catchments and organic contaminants.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Preliminary Modeling of Pesticide Fate in Drainage Channels Using the RIVWQ Model

Contamination of drainage channels and creeks with pesticides used in agriculture is of major concern in south eastern Australia. In this study the stream pesticide model RIVWQ version 2.02 was assessed for its applicability to simulate pesticide fate in drainage channels. The model was successfully calibrated against field data collected on flows and pesticide concentrations for a drainage cha...

متن کامل

Understanding the Causes of Spatial Variation in Pesticide Sorption and Degradation at the Catchment Scale

Intensive agricultural practices and use of pesticides, essential to achieve high crop yields, present particular risks to soil and water resources which sustain life. Degradation and sorption of pesticides in soils are both spatially variable and also among the most sensitive factors determining losses to surface water and groundwater. Currently, no general guidance is available on suitable ap...

متن کامل

Agricultural diffuse pollution in a chalk aquifer (Trois Fontaines, France): Influence of pesticide properties and hydrodynamic constraints

The characterization of the transfer of pesticides to and in groundwater is essential for effective water resource management. Intensive monitoring, from October 1989 to May 2006, of a weakly karstified chalk aquifer system in a 50 km agricultural catchment, enabled the characterization of the temporal variability of pesticide concentrations in the groundwater of the main outlet. Atrazine and i...

متن کامل

Simulating pesticides in ditches to assess ecological risk (SPIDER): II. Benchmarking for the drainage model.

SPIDER (simulating pesticides in ditches to assess ecological risk) is a locally distributed, capacitance-based model that accounts for pesticide entry into surface water bodies via spray drift, surface runoff, interlayer flow and drainage. SPIDER was developed for application to small agricultural catchments. Transport of pesticide from site of application to surface water via subsurface field...

متن کامل

A simplified modelling approach for pesticide transport in a tile-drained field: the PESTDRAIN model

The paper presents a simplified model called PESTDRAIN. It simulates pesticide transport in a subsurface tile-drained field. It computes surface runoff and tile-drainage flow rates, along with the associated pesticide concentrations, with a variable event-driven time step. PESTDRAIN consists of three coupled modules: SIDRA, SIRUP and SILASOL. SIDRA and SIRUP are the water flow simulation module...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Chemosphere

دوره 99  شماره 

صفحات  -

تاریخ انتشار 2014